NEW EVENT! Cutting-edge Trends for Life Sciences at PACK EXPO Southeast
Discover all the latest packaging solutions for life sciences products at the all-new PACK EXPO Southeast in Atlanta, GA, March 10-12, 2025

The New Pharma Factory

Under FDA and industry pressure, drug manufacturers are abandoning their old batch ways for a continuous approach to manufacturing. But it’s a slow transition.

Pfizer’s PCCM manufacturing prototype includes GEA’s ConsiGma continuous high-shear granulation and drying system, which is currently installed at Pfizer Labs in Groton, Conn.
Pfizer’s PCCM manufacturing prototype includes GEA’s ConsiGma continuous high-shear granulation and drying system, which is currently installed at Pfizer Labs in Groton, Conn.

Last year, on an overcast March morning, a few 18-wheelers rolled through the town of Groton, Conn., carrying massive metal boxes to the Pfizer R&D facility.

Shortly after that, on a clear dark night on the other side of the world, a container ship arrived at Shanghai’s Yangshan Port delivering similar-looking cargo to the JHL Biotech facility.

In Woburn, Mass., a ribbon-cutting ceremony was celebrating a 3,800-square-foot facility for startup Continuus Pharmaceuticals, where a state-of-the-art laboratory was in development.

While these are very different scenarios in terms of what is being built and why, they all have one thing in common: the adoption of flexible, modular continuous processing in pharmaceutical manufacturing.

Since the 19th century, drug makers have been working with units of operation to mix, grind, test and mill in different batches. What started with mortar and pestle has grown into more automated volume-controlled recipe processes that go through a quality check at each stage. The technique has met regulatory requirements and has worked effectively, but is quickly becoming an outdated method of manufacturing.

Drug shortages, global competition, and the introduction of precision medicines in a post-blockbuster era are causing the pharmaceutical community to reevaluate antiquated operations. And they are looking to the oil and gas and chemical industries to give them a lesson in continuous process manufacturing.

Continuous manufacturing allows for an uninterrupted flow from starting materials to synthesis to final dosage form. By eliminating isolated batches and switching to a streamlined continuous approach, manufacturers can deliver higher yields, as well as lower operating, inventory and capital costs, and reduce variability, resulting in more consistent quality.

But it also requires a complete infrastructure overhaul, which has caused the pharma industry to pause. Indeed, there are a few hurdles along the way to acceptance and adoption of this innovative concept in the conservative drug industry. Patient safety, regulatory compliance and financial stability are all at risk.

“At the management level, they don’t want to take the risk if they don’t need to,” says Günter Jagschies, senior director of strategic customer relations in the BioProcess Division of GE Healthcare Life Sciences. “So there is currently a debate between those believers of implementing continuous manufacturing and those who don’t think they need it because they’ve established a good enough batch process.”

On the other end of the spectrum is Dr. Janet Woodcock, director of the Center for Drug Evaluation and Research (CDER) at the Food and Drug Administration (FDA), who very clearly sees the need to modernize drug manufacturing. She has spoken publicly of her support for continuous manufacturing to improve drug quality. Despite this support, drug manufacturers are reluctant to move forward largely due to the need for FDA approval when changing manufacturing processes. So the agency is taking it a step further. This past October, the FDA awarded $4.9 million in grant funding to the Engineering Research Center for Structured Organic Particulate Systems (C-SOPS). C-SOPS is headquartered at Rutgers University and operates in partnership with other academic institutions and over 40 industrial consortium members ranging from pharmaceutical end users like Merck, GlaxoSmithKline and Pfizer to industrial technology suppliers like Siemens, Bosch and Emerson Process Management.

C-SOPS industry members are tasked with developing a proposal for regulations that would govern the introduction and expansion of continuous manufacturing techniques in the pharmaceutical industry. And, according to Woodcock, having automation suppliers onboard is a critical catalyst to success. That’s because the pharma industry has been concerned about the lack of vendors making equipment that will support this new method of drug manufacturing at a commercial scale.

“Equipment manufacturers will play an important role in this space,” Woodcock said in an interview with Industria Macchine Automatiche Lab (IMA Lab), “and will hopefully be proactive and reach out to the pharmaceutical industry to apply their engineering and creative talents in order to find out what support will be needed.”

The FDA, too, is being proactive. Beyond funding R&D, in December the agency created the Emerging Technology Team (ETT) as part of the CDER, and invited pharmaceutical companies to participate in a program to collaborate with ETT while implementing cutting-edge technology.

Innovators and investors

INTRODUCING! The Latest Trends for Life Sciences at PACK EXPO Southeast
The exciting new PACK EXPO Southeast 2025 unites all vertical markets in one dynamic hub, generating more innovative answers to packaging challenges for life sciences products. Don’t miss this extraordinary opportunity for your business!
Read More
INTRODUCING! The Latest Trends for Life Sciences at PACK EXPO Southeast