LAST CHANCE TO SAVE! New Trends for Life Sciences at PACK EXPO Southeast
Discover all the latest packaging solutions for life sciences products at the all-new PACK EXPO Southeast in Atlanta, GA, March 10-12, 2025
REGISTER ASAP FOR $30!

Immobilized plant cells: from DSMZ to the customer

VisiSens technology is used to detect metabolic activities of immobilized plant cells during simulated cell transport in a closed system.

The Leibniz-Institut DSMZ (Deutsche Sammlung von Mikroorganismen und ZellKulturen GmbH) refers to itself as one of the largest biological resource centers worldwide. Its website says that the company’s “collections currently comprise almost 40,000 items, including about 20,000 different bacterial and 5,000 fungal strains, 700 human and animal cell lines, 800 plant cell lines, 1,000 plant viruses and antisera, and 4,800 different types of bacterial genomic DNA. In addition, DSMZ provides extensive documentation and detailed diagnostic information on the biological materials.”

Braunschweig, Germany-based DSMZ serves as an international supplier for science, diagnostic laboratories, and national reference centers, as well as industrial partners. DSMZ sends cell cultures to clients either by post or by a private parcel service, to customers in Germany, and the rest of Europe, as well as to the U.S.

The use of plant cell lines for fundamental as well as applied research relies on stable material. For plant cell lines the reliable long-term preservation and distribution is an essential aspect. Research activities therefore aim not only to develop new and advanced methods for plant cell cryopreservation, but also improve transport to customers.

To address the issue, DSMZ selected the VisiSens™ CO2 imaging system from Precision Sensing GmbH to monitor metabolic activity and with it the fitness of living cells in airtight transport systems.

PreSens provides chemical optical O2, pH, and CO2 sensors—parameters that are essential for life. The company develops, manufactures, and distributes sensor systems for biotech and pharmaceutical and food and beverage industries, as well as for scientific applications and medical devices.

DSMZ’s aim is to send active cells under sterile conditions, which have been immobilized in alginate beads and afterwards cryopreserved. So far at DSMZ the cells are regrown on agar plates after thawing, which is time-consuming. These living cultures are distributed wrapped manually in air-bubble plastic and packed in a plastic jar with screw cap.

Dispatch of cryopreserved cells could be sent directly in the cryovials, provided they survive the transport. To be able to investigate this question using the VisiSens CO2 imaging system the transport situation was simulated transferring the immobilized cells into plastic cuvettes from Brand, airtight-closed by plasticine. They need to be sent to clients as soon as they have been regenerated after cryopreservation.

CO2 monitoring together with pH and O2 imaging in the sealed cuvettes have revealed that immobilized plant cells show metabolic activity even after 10 days of storage in the transport vessels.

In contrast to bacterial cells, plant cell lines are difficult to cryopreserve due to high water content and subcellular structure. A routine long-term preservation method is still missing, and regular routine culture transfer causes a constant workload. Continuous sub-culturing bears the risk of losing cultures by laboratory failure or by genetic/epigenetic changes.

One approach for cryopreservation uses the encapsulation of plant cells in alginate beads, which are then cryopreserved and stored in liquid nitrogen until they are requested by a customer. As plant cells often do not survive transport at -70°C and transport at liquid nitrogen temperatures is economically not feasible, reactivated cells have to be delivered in the living state.

Transport vials containing cells and medium have to be hermetically sealed to maintain sterility during transport. Plant cell lines are fed heterotrophically under culturing conditions, i.e., they are photosynthetically inactive and use sugar as a carbon source supplied with the culture medium.

As a consequence they produce carbon dioxide rather than consume it. The VisiSens CO2 imaging system was applied to visualize carbon dioxide changes in an airtight closed transport system (Fig. 1). The goal was to monitor metabolic activity indicating fitness of living cells by detecting the accumulation of the metabolic end product carbon dioxide. Monitoring of carbon dioxide was supplemented by recording pH and O2 in the same system.

Materials and methods

To perform the investigations using the VisiSens CO2 imaging system immobilization of plant cells was necessary. Plant cells of actively growing liquid cultures of Solanum tuberosum Desirée and Nicotiana tabacum BY2 were used.They were washed twice with medium (without CaCl2), and 10 mL of each culture were poured in a Falcon tube (50 mL), which was filled up to 30 mL with 3% alginate solution. The combination of cells and alginate was gently mixed and then dripped into a 100mM CaCl2 solution using a pipette with a cut tip.

LAST CHANCE TO SAVE! New Tech for Life Sciences at PACK EXPO Southeast
The exciting new PACK EXPO Southeast 2025 unites all vertical markets in one dynamic hub, generating more innovative answers to packaging challenges for life sciences products. Don’t miss this extraordinary opportunity for your business!
REGISTER ASAP FOR $30!
LAST CHANCE TO SAVE! New Tech for Life Sciences at PACK EXPO Southeast