PMMI ProSource – Start Your Search
Check out our packaging and processing solutions finder, PMMI ProSource.

Versatility galore at Iowa contract packager

A proprietary algorithm that mimics ‘swarm intelligence’ exhibited by birds and other critters is at the heart of this ambitious 12-robot cartoning system at CCB Packaging.

Shown here is one of 12 automated feeding systems. Including both left and right sides, each feeding system deploys 180 rollers in clusters of six. Each cluster has its own sensor, its own stepper motor/drive combo, and its own controller. Because each cluster communicates with the ones around it, each controller knows if the overall goal of singulating the flow of pouches will be better accomplished by speeding up or slowing down its six rollers.
Shown here is one of 12 automated feeding systems. Including both left and right sides, each feeding system deploys 180 rollers in clusters of six. Each cluster has its own sensor, its own stepper motor/drive combo, and its own controller. Because each cluster communicates with the ones around it, each controller knows if the overall goal of singulating the flow of pouches will be better accomplished by speeding up or slowing down its six rollers.

Delta-style robots can pull off some pretty remarkable feats of packaging, especially when it comes to cartoning of primary packs. A great illustration is the latest installation at contract packager CCB Packaging, where no less than 12 robotic cells are all lined up in a compact row. Designed and supplied by Blueprint Automation, Line 2 lets the Hiawatha, IA-based co-packer put snack pouches or breakfast bars, for example, into top-load cartons of varying sizes at speeds to 150 items/min. Not only can its ABB robots produce multi-flavor variety packs or single-flavor cartons, they can also put different products—like four cereal bars, two oatmeal packs, and some fruit snacks—into one carton.

For a contract packager whose many customers require packaging formats in bewildering varieties, the versatility of the new line is just what the doctor ordered. Key contributions include carton erecting and closing from Kliklok Woodman Packaging Machinery and an array of vision systems from Cognex. Impressive though these may be, what takes the cake in this installation are the 12 feeding systems bringing primary packs to the 12 robots. They, too, come from Blueprint Automation. Installed August 2014 while still in beta phase, the feeders take primary packs from bulk totes and orient them in neatly spaced rows so that the vacuum pick-up cups on the robots can pick and place the packs into cartons moving continuously along a Kliklok Woodman Vari-Pitch conveyor.

“This is brand new feeder technology that we’ve been working on with Blueprint for nearly two-and-a-half years,” says CCB Vice President Frank Cotty. “If the pouches are all clumped together, the robots can’t make a clean pick. We need separation of the primary packages. That’s what these automated feeders provide.”

Certainly helpful in bringing this project to a happy conclusion is the fact that Blueprint and CCB view each other less as vendor and buyer and more as automation/integration partners. They also have a strong track record together, as this represents the third major project on which they’ve collaborated.

Upstream from the robots
The cartons that get robotically loaded are automatically erected on a Genesis top-load, lock-style carton-forming machine from Kliklok Woodman. CCB runs a number of carton sizes on this line, anything from small retail size to larger club offerings, so it’s nice that the machine has a quick-change feed-bar assembly and quick-release plunger tube mountings that allow for fast carton size changeover without the use of tools. The Genesis features twin carton set-up stations, but on the day of our visit a large carton for an 18-count carton was in production, so only one of the carton set-up tools would fit.

One other signature characteristic of the Genesis is that it uses vacuum strip-off for added control of the cartons it erects. Cotty explains.

“Rather than just drop a carton down onto the takeway conveyor, a tool with vacuum cups goes up and strips the carton right off the forming block and guides it down onto the conveyor. The added measure of control helps permit running at higher speeds.”

Erected cartons are released onto a conveyor belt that takes them past a Cognex DataMan 300/360 Series fixed-mount bar-code reader. “It reads a bar code on each carton to confirm that we have the right carton for the product we’re running,” says Cotty. “It’s just in case something happens at the carton converter and a wrong carton gets into the mix. But it also catches any bar code that might be unreadable when it reaches the retailer.”

Cotty says he likes the auto-tuning that’s offered by the Cognex reader, an intelligent tuning feature that automatically selects the optimum settings for the integrated lighting, autofocus, and imager for each application. This auto-tuning process ensures that the bar-code reader will be set up to attain the highest read rates possible.

The flat tabletop conveyor between the carton erector and the first robot provides some measure of accumulation should it be needed. It takes cartons, with covers open, to a tractor index feeder that spaces the cartons for smooth transfer into the Vari-Pitch conveyor that takes the cartons through the 12 robots. The Vari-Pitch conveyor is described by Cotty as a custom-supplied component designed by Kliklok Woodman that isn’t to be found on any other carton loading operation in the world—at least not yet.

“They took the concept of pop-up lugs from their Vari-Straight carton closing equipment and made it into a carton conveyor for us,” says Cotty. “The recipe management system specifies how long the carton is for a particular production run. Based on how long the carton is, the conveyor automatically selects which lugs to pop up. So it brings us automatic pitch change and lets us run a wide variety of carton sizes at linear speeds well within the robots’ abilities to pick and place.

“Because we’re a co-packer with many different customers and products, flexibility is the key. The new line offers the versatility to run a wide range of carton sizes and products along with quick changeover. We package everything from retail-size cartons up to larger variety packs at speeds up to 150 cartons/min.”

The feeding systems
Feeding into the line of robots from a 90-degree angle are the 12 Blueprint Automation feeding systems. Each one operates identically, and each one has 180 white spinning rollers mounted in a stainless steel cabinet, 90 down the left side and 90 down the right. It’s these rollers that both advance the pouches forward and separate them from each other so that the vacuum cups on the delta-style robots can cleanly pick them.

Pouches reach a feeding system by way of a bucket elevator that brings pouches from a floor-level hopper up to a diverter mechanism that pivots left or right depending on whether the left or right side of the feeding system needs pouches. Both sides are identical and operate the same way, but for our purposes here, we’ll follow the left side. Its first section consists of 30 rollers, each about 12 inches long. The rollers are clustered into groups of six, and the rotation of all six is powered by one stepper motor/drive combination having its own controller. Also integrated into each cluster of six rollers is a Keyence sensor that detects where a pouch is positioned relative to the ones around it. This position information is sent to the six-roller cluster’s CPU, which then determines if, based on where the pouches around it are located, it should speed up its six rollers or slow them down. It’s this mutually synchronized modulation of the speed of the six-roller clusters that spaces the pouches out.

Pouches drop next onto a second stretch of white rollers whose diameter is about the same but whose length is about 4 inches shorter than the rollers in the first section. The right end of these rollers is tilted slightly higher than the left, which keeps most of the pouches on the rollers so the pouches can be propelled forward. But there simply isn’t room for all for the pouches, so the ones that slip off the right edge of the rollers land on a floor-level return conveyor from Dorner that reintroduces them into the system by way of the bucket elevator back at the beginning of the feeder system.