LAST CHANCE TO SAVE! New Trends for Life Sciences at PACK EXPO Southeast
Discover all the latest packaging solutions for life sciences products at the all-new PACK EXPO Southeast in Atlanta, GA, March 10-12, 2025
REGISTER ASAP FOR $30!

Looking Upstream: Pharma Catches on to Continuous Manufacturing

Support from the FDA, industry groups and automation suppliers is helping pharmaceutical companies break the batch habit in favor of a continuous approach to drug production.

Support from the FDA, industry groups and automation suppliers is helping pharmaceutical companies break the batch habit in favor of a continuous approach to drug production.
Support from the FDA, industry groups and automation suppliers is helping pharmaceutical companies break the batch habit in favor of a continuous approach to drug production.

In November 2016, Continuus Pharmaceuticals was awarded a $4.4 million contract by the U.S. Food and Drug Administration (FDA). The partnership revolves around a pilot project that will result in a science and risk-based approach to monitoring drug quality in an integrated continuous manufacturing (CM) model. Now, in the second year of this three-year project, Continuus has built an active end-to-end lab at its facility in Woburn, MA, and continues to work closely with the FDA in an effort to help the pharmaceutical industry break the batch processing mold.

Batch, which is based on a series of stop-and-start steps and quality checks across different unit operations, has been the methodology of choice for more than 50 years. But it is costly and inefficient, and can easily introduce errors. For these reasons, the pharmaceutical industry (both chemical and biotechnology) has been working to develop CM processes, where material is moved through an assembly line of fully integrated components. The critical element, however, is how to maintain quality throughout the line so that the process meets good manufacturing practices (GMPs). Once figured out, CM promises higher quality, shorter production times and more flexible testing and control.

The FDA supports the industry’s overall efforts. In 2015, the agency granted Vertex Pharmaceuticals approval of its cystic fibrosis drug called Orkambi, which was produced on a continuous processing line. Janssen’s HIV treatment, Prezista, is also being made now using continuous processes—in part, this is a result of the company’s work with the FDA’s Emerging Technology Team (ETT), which assists companies that are implementing CM technology for new and existing drugs.

Meanwhile, Eli Lilly invested $40 million in a CM facility in Ireland that is to serve as Lilly’s global center of excellence for CM focusing on its active pharmaceutical ingredients. Pfizer and GlaxoSmithKline (GSK) have also teamed up on CM, and Novartis is now leveraging technology developed with the Massachusetts Institute of Technology (MIT) as part of a 10-year collaboration called the Novartis-MIT Center for Continuous Manufacturing (CCM). In fact, Continuus Pharmaceuticals is the commercial spin-off of the Novartis-MIT CCM research, and is licensing the technology and working with strategic partners on its integrated continuous manufacturing (ICM) technology.

“What we have is unique,” said Salvatore Mascia, Founder and CEO of Continuus Pharmaceuticals. That’s why the FDA is supporting a pilot process. “They are interested in how we monitor [active pharmaceutical ingredients] in the line to gain an understanding of how you control the system and product quality, with the hope that this can guide future regulatory guidelines.”

The FDA has issued guidance frameworks around various aspects of the transition to CM, the most recent being “Advancement of Emerging Technology Applications for Pharmaceutical Innovation and Modernization,” released in September. The guidance documents don’t establish legally enforceable responsibilities, but rather recommendations that will ease the regulatory review, compliance and inspection policies.

The FDA is building an understanding of how to regulate a continuous process. “This is an opportunity for the agency to understand how you control a line and to make sure there is product quality throughout a fully integrated end-to-end system,” Mascia says.

While the CM technology—for the industry in general—is working just fine in a laboratory environment, there is a need for more equipment that can scale for commercial use.

“Technically speaking, it is possible to put together a continuous process from an engineering perspective. But if the elements of quality by design (QbD) are not built in, you may have a challenge getting it approved,” said Naveen Pathak, Head of QbD Systems at Shire, during a presentation at the Commercializing Continuous Processing in Pharma Summit in Boston earlier this year. “It will be a nice engineering project, but it won’t see the light of day.”

That is where technology suppliers can help. Working with engineering firm New England Controls, the Continuus ICM system uses Emerson’s DeltaV for control and automation of all of its processes. In addition, Emerson’s Syncade software is the manufacturing execution system (MES) providing instructions to the operators so that necessary actions are completed correctly and at the right time. “We collaborate to build the modeling and control aspect of it,” Mascia says.

LAST CHANCE TO SAVE! New Tech for Life Sciences at PACK EXPO Southeast
The exciting new PACK EXPO Southeast 2025 unites all vertical markets in one dynamic hub, generating more innovative answers to packaging challenges for life sciences products. Don’t miss this extraordinary opportunity for your business!
REGISTER ASAP FOR $30!
LAST CHANCE TO SAVE! New Tech for Life Sciences at PACK EXPO Southeast