NEW EVENT! Cutting-edge Trends for Life Sciences at PACK EXPO Southeast
Discover all the latest packaging solutions for life sciences products at the all-new PACK EXPO Southeast in Atlanta, GA, March 10-12, 2025

Innovative New Pharmaceutical Packaging at PACK EXPO International

PMG editors fanned out across PACK EXPO International in October in search of packaging innovation. Here's what they found in pharmaceutical packaging.

Photo 1—gronigner
Photo 1—gronigner

NOTE: Pharmaceutical packaging wasn’t the only area of interest at PACK EXPO. Click the links that follow to read more about innovations in: Machinery   Food Processing & Packaging  Sustainable Packaging  Robotics  |  Controls

At PACK EXPO International, groninger displayed its new flexcare 100 filling and closing system (1), which accommodates varied applications including eye drops at speeds of approximately 70 to 120 parts/min. The system offers a high level of flexibility and availability thanks to the quick and tool-free change of format parts. It is suited to processing a variety of products, including OTC pharmaceuticals, diagnostics, and dietary supplements in sprays, drops, syrups, and more. With a modular focus, a variety of functions can be added such as multi-stage gassing, filling, and weight monitoring. Even different types of closures can be easily accommodated. To reduce pausing on the line, revolving filling needles move with the items during filling, leaving more time for the actual filling process. This allows for larger filling volumes, even with higher relative outputs. groninger notes that the needle also follows the filling level in the containers during the filling process, which prevents foaming and dripping and further increases the safety of the process. The system offers precise filling for volumes from 10 to 270 mL. 

The machine’s flexibility delivers benefits for those processing multiple closures on a single line. The system offers three different closing stations for different closure types: droppers or stoppers that are set; screw and sealing caps or spray pumps with dip tubes that are closed and screwed on with servomotors; and overcaps.

Products are transported in a smooth and stable manner through the system with walking beams. This allows users to fully implement automatic weight monitoring without issues. Generally, two load cells are installed. Due to the intermittent walking beams’ transport, the tare weight and then the gross weight of each bottle can be determined before filling. If net weight is determined to be out of spec, the item is sorted out and rejected. The line is designed so that all parts are easily accessible for cleaning. The system works with stainless steel volumetric rotary piston pumps for manual cleaning or with CIP/SIP-capable ceramic pumps. A mass flow meter can be used for both small and large filling volumes. Another option is peristaltic pumps, which can also be used with disposable tubing systems.

Watch a video of the machine in action.

Robotics to the rescue

Much innovation in pharmaceutical processing and packaging can be attributed to contamination reduction strategies that require innovation in robotics. At PACK EXPO International, Steriline showcased its new Robotic 3D Control and Picking Solution (3D CPS) that includes both robotics and vision systems (2). The system was developed in partnership with ISS – Innovative Security Solutions, a spin-off company from acclaimed technical university Politecnico di Milano in Europe. Photo 2—SterilinePhoto 2—Steriline

The Robotics 3D Control and Picking Solution is particularly suitable for capping and stoppering in the primary packaging of small batches that require an aseptic environment, such as in personalized medicine and the production of cell and gene therapies.

As Federico Fumagalli, chief commercial officer at Steriline, explains, the company continues to innovate with robotics in its aseptic filling machines, and they develop their robotic software in-house to offer intelligent motion and activities that are often performed by people. He says that in many cases, a robotic arm will move from A to B and B to A, but this application shows how robotics can be programmed by a 3D camera that scans—in this case the ARaymondLife cap—finds a good trajectory to move in, picks up the stopper, and places it on the vial.

“The Robotic 3D Control and Picking Solution is a mechatronic component equipped with a vision system that can detect tools within a defined area and adapt its function based on the relative feedback,” reports Steriline. “It is composed of a robotic arm, a picker, an infrared ray (IR) stereoscopic vision system, and software for planning trajectories, accessing the recipe database and interpreting the input data coming from the sensors.”

• The robotic arm moves the picker throughout the working area, the dimensions of which can be modified based on the length of the levers.

• Sophisticated algorithms generate trajectories to allow the picker, located at the end of the arm, to reach the item, pick it up, and then move it to its final destination.

• These paths are generated based on the information received by the 3D vision system, which uses a stereoscopic vision-based measuring technique: an IR source emits an IR light pattern that is visible to visual sensors and not to the human eye. The scattering of the light is detected, acquiring a profile of the scene. This technology allows the system to autonomously generate reliable trajectories for simpler and more linear movements and avoid any collisions with the surrounding environment.

“In the pharmaceutical industry, limiting the release of particles during sensitive processes makes the difference because it reduces the risk of contamination,” says Fumagalli, whose vision it was to use the robotics to avoid contamination in primary packaging. “With this in mind, we looked for different solutions on how to remove the main parts that increased the dispersion of particles during, in this case, the stoppering and capping processes. So we chose to replace the hopper, the vibrating cup, and the linear slide with robots combined with a vision system.”

The partners also sought to simplify format changes. “Flexibility is definitely an added value of robotic solutions” adds Alessandro Caprioli, Partner at ISS – Innovative Security Solutions. "In fact, with standard solutions, the production process and the relative mechanical parts need to be reconfigured in order to manage or handle a different container. With a robotic application, you generally only need to set up a different recipe via the software."

All about the cold chain

As temperature during freight travel continues to be a significant issue, especially for companies operating out of multiple locations within the pharmaceutical and medical device industry, Storopack’s  Renature Thermo packaging (3) is designed to be a sustainable solution that meets cold chain standards. Photo 3—TCPPhoto 3—TCP

Renature Thermo packaging comes in poly-wrap and paper-wrap substrates, both of which are fully recyclable. The starch inside the wrap is certified BPI-compostable and the entire kit has gone through Western Michigan University’s recyclability study for further certification.

“We do not laminate the poly or the paper with starch because we want the customer at home to be able to open up that pouch, remove the starch, place it in their compost pile, and return that starch back to nature, then recycle that poly or that paper material,” says Tony Iadevito, national sales manager at Storopack. He further explained that Storopack can reuse the wraps recycled back to the company within the production of its other product lines.

Storopack customizes the Renature Thermo packaging to meet the size requirements of its customers, along with offering the standard cube-sized kit. This customization helps Storopack’s customers reduce the amount of substrates otherwise used to fill a space that is too big for their products.

“We're also going to be introducing, at the start of this next year, custom print capabilities. Because we convert our own poly and paper materials, we're not stuck to large minimum orders buying master roles from the manufacturers,” said Iadevito. This provides the flexibility to custom design holiday messaging and other print on the packages as Storopack can mandate on a truckload to truckload basis to provide that custom print before the customer returns to its regular messaging.

Storopack started producing its Renature Thermo product line from its North Carolina production facility at the start of this year, which will soon be joined by a launch at its California facility. Storopack plans to open up two new facilities within the next four years as well with the ultimate goal to have between eight and ten production facilities solely tied to the production of its Renature Thermo product line, according to Iadevito.

Elsewhere in the cold chain scene,  Lifoam Industries, LLC, a division of LifeMade Products LLC, a Jadex Inc. company, has debuted its XP-4 Pallet Shipper (4), a pallet-in-pallet cold chain shipper for thermal protection during passive transport of pharmaceutical products. Photo 4—LifoamPhoto 4—Lifoam

As Alex Arabea, Senior Brand Manager, explains, “The XP-4 acts as an exterior shell working with phase change materials (PCMs), water-based gels, and our ePUR technology which insulates ~30% better pound-for-pound than traditional polyurethane.” Two XP-4s can fit on a standard airline cookie sheet, and the system is designed for reusability. “You can break it down and fold it flat to ship back empty at a fraction of its assembled height, and then build it right back up at your facility to use again,” he says.

The walls of the XP-4 are designed for ease of assembly and disassembly while offering robust protection for temperature-sensitive payload. “For shipping duration, we're able to achieve 120 hours tested to ISTA 7D between 2 to 8°C , but there is the opportunity to expand based on changing out the phase change materials,” he says.

Outer dimensions of the XP-4 are 67.75” x 59.75” x 62.25,” while payload space is 48” x 40” x 34” (assuming a 5” pallet).

Arabea notes they’ve received positive response on the design from cold chain experts, particularly due to the company’s robust testing and data. “The XP-4 is based off a previous iteration, and we've redesigned this model to be lighter, use fewer PCMs, and assemble more easily.” As he puts it, you're not always going to have Arnold Schwarzenegger assembling pallet shippers at your warehouse or distribution facility, so ease of use is important to be accessible to a wide range of personnel.

Lifoam Industries has also launched its recyclable Propak gel bags this year. They’ve taken their widely established standard Propak gels and placed them in a recyclable film. Applications for the gel bags range from consumer food deliveries to pharmaceutical shipping—anywhere water-based gels are being used.

“We've seen the trend towards sustainability and know that these are going to a lot of home users who want to dispose of gel packs responsibly after their deliveries,” Alex Arabea, senior brand manager, says. “My typical example is you get a meal kit once and say, ‘Cool. A free gel pack for my kid’s lunch.’ Then you get a second one. ‘Oh nice, another one.’ You get a third, and ask, ‘What do I do with this?’ And you're wondering how to responsibly dispose of it.”

Unlike some gels that cause clogs when poured down drains, the user is able pour the liquid from recyclable Propak gel bags down their home drain without clogs. “It’s perfectly safe to put this gel down the drain. We have worked with water and wastewater treatment organizations and conducted testing to confirm that it won't harm anything down the line,” he explains.

The bag has disposal instructions in clear print on the back, using the How2Recycle symbol that consumers are familiar with. Empty Propak gel film is recycled via store drop-off, as curbside recyclable films for this application are not readily available. “Consumers see that How2Recycle symbol on everything from water bottles to food packaging and more, so it helps with that consumer education piece. They’ll know how to properly dispose of these products and take advantage of the sustainability that we built in, without them having to do extra research on their own,” Arabea notes.

Branding has also been updated on the bags. “Our gel bags look a little bit different than they have in the past—this is a move towards sustainability. We've done all the testing to say that there's no requalification necessarily, there's no negative impact. Just a sustainable wrapper around the same gel,” he says.

Hybrid printing and monomaterials

Hybrid printing systems, where flexo and digital are combined in a single system, have been around for a while now. But like anything else in the packaging arena they can always be optimized. A good example is the H382 Hybrid (5) that was on display at Hapa’s PACK EXPO International booth . This system is part of the evo+ family of printing systems, a greatly optimized approach to printing the lidding material on blister packs or other lidding materials in the pharmaceutical manufacturing space. Photo 5—HapaPhoto 5—Hapa

INTRODUCING! The Latest Trends for Life Sciences at PACK EXPO Southeast
The exciting new PACK EXPO Southeast 2025 unites all vertical markets in one dynamic hub, generating more innovative answers to packaging challenges for life sciences products. Don’t miss this extraordinary opportunity for your business!
Read More
INTRODUCING! The Latest Trends for Life Sciences at PACK EXPO Southeast